One-pot synthesis of graphene/chitin nanofibers hybrids and their remarkable reinforcement on Poly(vinyl alcohol)

Carbohydr Polym. 2018 Aug 15:194:146-153. doi: 10.1016/j.carbpol.2018.04.036. Epub 2018 Apr 10.

Abstract

Novel hybrid nanomaterials composed of graphene and chitin nanofibers (ChNFs) were successfully prepared by one-pot ball milling. Under strong shear and collision force of ball milling, graphite was exfoliated to mono-layer or few-layer graphene with the assistance of chitin nanofibers. Unexpectedly, the hybridization of exfoliated graphene and ChNFs was realized simultaneously. Morphology analysis observed that the ChNFs were adsorbed tightly on the surface of graphene, providing for reduced graphene hydrophobicity and enhanced stability of the hybrid dispersion. In addition, the concentration of exfoliated graphene reaches up to 1.5 mg ml-1. Strong interaction between graphene and ChNFs may benefit from the large amounts of carboxylate groups on the surface of ChNFs, which was prepared by TEMPO-mediated oxidation of chitin. As prepared graphene/ChNFs hybrids can remarkably enhance both the tensile strength and toughness of Poly(vinyl alcohol). This study provides a green, simple and large-scale synthesis method for preparing water-dispersible graphene/ChNFs hybrid nanobuilding blocks, which shows great promise potential in various applications requiring biocompatibility, hydrophilicity, electrical conductivity and strong mechanical properties.

Keywords: Ball milling; Chitin nanofibers; Graphene; Hybrid nanomaterial; Mechanical properties.