Calibration to improve forward model simulation of microwave emissivity at GPM frequencies over the U.S. Southern Great Plains

IEEE Trans Geosci Remote Sens. 2016 Feb;54(2):1103-1117. doi: 10.1109/TGRS.2015.2474120. Epub 2015 Oct 29.

Abstract

Better estimation of land surface microwave emissivity promises to improve over-land precipitation retrievals in the GPM era. Forward models of land microwave emissivity are available but have suffered from poor parameter specification and limited testing. Here, forward models are calibrated and the accompanying change in predictive power is evaluated. With inputs (e.g., soil moisture) from the Noah land surface model and applying MODIS LAI data, two microwave emissivity models are tested, the Community Radiative Transfer Model (CRTM) and Community Microwave Emission Model (CMEM). The calibration is conducted with the NASA Land Information System (LIS) parameter estimation subsystem using AMSR-E based emissivity retrievals for the calibration dataset. The extent of agreement between the modeled and retrieved estimates is evaluated using the AMSR-E retrievals for a separate 7-year validation period. Results indicate that calibration can significantly improve the agreement, simulating emissivity with an across-channel average root-mean-square-difference (RMSD) of about 0.013, or about 20% lower than if relying on daily estimates based on climatology. The results also indicate that calibration of the microwave emissivity model alone, as was done in prior studies, results in as much as 12% higher across-channel average RMSD, as compared to joint calibration of the land surface and microwave emissivity models. It remains as future work to assess the extent to which the improvements in emissivity estimation translate into improvements in precipitation retrieval accuracy.

Keywords: Parameter estimation; Radiometry; Remote sensing.