Atomic structures of TDP-43 LCD segments and insights into reversible or pathogenic aggregation

Nat Struct Mol Biol. 2018 Jun;25(6):463-471. doi: 10.1038/s41594-018-0064-2. Epub 2018 May 21.

Abstract

The normally soluble TAR DNA-binding protein 43 (TDP-43) is found aggregated both in reversible stress granules and in irreversible pathogenic amyloid. In TDP-43, the low-complexity domain (LCD) is believed to be involved in both types of aggregation. To uncover the structural origins of these two modes of β-sheet-rich aggregation, we have determined ten structures of segments of the LCD of human TDP-43. Six of these segments form steric zippers characteristic of the spines of pathogenic amyloid fibrils; four others form LARKS, the labile amyloid-like interactions characteristic of protein hydrogels and proteins found in membraneless organelles, including stress granules. Supporting a hypothetical pathway from reversible to irreversible amyloid aggregation, we found that familial ALS variants of TDP-43 convert LARKS to irreversible aggregates. Our structures suggest how TDP-43 adopts both reversible and irreversible β-sheet aggregates and the role of mutation in the possible transition of reversible to irreversible pathogenic aggregation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amyotrophic Lateral Sclerosis / genetics
  • Amyotrophic Lateral Sclerosis / metabolism
  • DNA-Binding Proteins / chemistry*
  • DNA-Binding Proteins / genetics
  • DNA-Binding Proteins / metabolism*
  • Humans
  • Mutation
  • Organelles / metabolism
  • Protein Conformation, beta-Strand

Substances

  • DNA-Binding Proteins
  • TARDBP protein, human