Bionanocomposites materials for food packaging applications: Concepts and future outlook

Carbohydr Polym. 2018 Aug 1:193:19-27. doi: 10.1016/j.carbpol.2018.03.088. Epub 2018 Mar 27.

Abstract

Bionanocomposites materials open a chance for the usage of novel, high performance, lightweight, and ecofriendly composite materials making them take place the traditional non-biodegradable plastic packaging materials. Biopolymers like polysaccharides such as chitosan (CS), carboxymethyl cellulose (CMC), starch and cellophane could be used to resolve environmental hazards owing to their biodegradability and non-toxicity. In addition these advantages, polysaccharides have some disadvantages for example poor mechanical properties and low resistance to water. Therefore, nanomaterials are used to improve the thermal, mechanical and gas barrier properties without hindering their biodegradable and non-toxic characters. Furthermore, the most favorable nanomaterials are layered silicate nanoclays for example montmorillonite (MMT) and kaolinite, zinc oxide (ZnO-NPs), titanium dioxide (TiO2-NPs), and silver nanoparticles (Ag-NPs). In packaging application, the improvement of barrier properties of prepared films against oxygen, carbon dioxide, flavor compounds diffusion through the packaging films. Wide varieties of nanomaterials are suitable to offer smart and/or intelligent properties for food packaging materials, as demonstrated by oxygen scavenging capability, antimicrobial activity, and sign of the level of exposure to various harmful features for instance oxygen levels or insufficient temperatures. The compatibility between nanomaterials and polymers matrix consider the most challenge for the preparation of bionanocomposites as well as getting whole distribution of nanoparticles into the polymer matrix. We keen in this review the development of packaging materials performance and their mechanical, degradability and thermal stability as well as antibacterial activity for utilization of bionanocomposites in different packaging application is considered.

Keywords: Antibacterial activity; Barrier properties; Bionanocomposites; Nanoparticles; Packaging application.

Publication types

  • Review