Electrochemical Deposition of ZnO Porous Nanoplate Network for Dye-Sensitized Solar Cells

J Nanosci Nanotechnol. 2018 Jan 1;18(1):56-61. doi: 10.1166/jnn.2018.14614.

Abstract

Mesoporous ZnO films composed of interconnected porous nanoplates were prepared by an electrochemical deposition-pyrolytic conversion approach and constructed into the photoanodes of dyesensitized solar cells (DSSCs). Precursor nanoplates grown on conducting glass substrates were transformed into ZnO porous nanoplates by calcination at 400 °C for 1 h. Correlations between the ZnO film thickness and the electrochemical deposition time were determined in order to prepare ZnO films of various thicknesses and to study the effect of the film thickness on the photovoltaic performance of DSSCs. The optimal film thickness was determined to be approximately 27 μm, and the best performing cell reached an energy conversion efficiency of 2.91%. The results show that the ZnO porous nanoplate network so prepared is suitable for DSSC applications.