Lanthanide-Based Porous Coordination Polymers: Syntheses, Slow Relaxation of Magnetization, and Magnetocaloric Effect

Inorg Chem. 2018 Jun 4;57(11):6584-6598. doi: 10.1021/acs.inorgchem.8b00720. Epub 2018 May 16.

Abstract

Two lanthanide-containing structurally analogous porous coordination polymers (PCPs) have been isolated with the general molecular formula [Ln2(L1)2(H2O)4(ox)] n.4 nH2O (where L1 = fumarate, ox = oxalate; Ln = Dy (1), Gd (2)). Thermogravimetric analysis (TGA) and TG-MS measurements performed on 1 and 2 suggest that not only the solvated water molecules in the crystal lattice but also the four coordinated water molecules on the respective lanthanides in 1 and 2 are removed upon activation. Due to the removal of the waters, 1 and 2 lost their crystallinity and became amorphous, as confirmed by powder X-ray diffraction (PXRD). We propose the molecular formula [Ln2(L1)2(ox)] n for the amorphous phase of 1 and 2 (where Ln = Dy (1'), Gd (2')) on the basis of XANES, EXAFS, and other experimental investigations. Magnetization relaxation dynamics probed on 1 and 1' reveal two different relaxation processes with effective energy barriers of 53.5 and 7.0 cm-1 for 1 and 45.1 and 6.4 cm-1 for 1', which have been rationalized by detailed ab initio calculations. For the isotropic lanthanide complexes 2 and 2', magnetocaloric effect (MCE) efficiency was estimated through detailed magnetization measurements. We have estimated -Δ S m values of 52.48 and 41.62 J kg1- K-1 for 2' and 2, respectively, which are one of the largest values reported for an extended structure. In addition, a 26% increase in -Δ Sm value in 2' in comparison to 2 is achieved by simply removing the passively contributing (for MCE) solvated water molecule in the lattice and coordinated water molecules.