Effects of dietary arginine levels on growth performance, body composition, serum biochemical indices and resistance ability against ammonia-nitrogen stress in juvenile yellow catfish (Pelteobagrus fulvidraco)

Anim Nutr. 2016 Sep;2(3):204-210. doi: 10.1016/j.aninu.2016.07.001. Epub 2016 Jul 17.

Abstract

This experiment was conducted to investigate the effects of dietary arginine levels on growth performance, body composition, serum biochemical indices and resistance ability against ammonia-nitrogen stress in juvenile yellow catfish (Pelteobagrus fulvidraco). Five isonitrogenous and isolipidic diets (42% protein and 9% lipid) were formulated to contain graded levels of arginine (2.44%, 2.64%, 2.81%, 3.01% and 3.23% of diet), by supplementing L-Arginine HCl. Seven hundred juvenile yellow catfish with an initial average body weight of 1.13 ± 0.02 g were randomly divided into 5 groups with 4 replicates of 35 fish each and each group was fed one of the diets. After 56 d feeding, fish were exposed to 100 mg/L of ammonia-nitrogen for 72 h. The results showed that weight gain (WG) and specific growth rate (SGR) in 2.64% and 2.81% groups were significantly higher than those in 3.23% group (P < 0.05). The feed conversation ratio (FCR) in 2.64%, 2.81% and 3.01% groups was significantly decreased when compared with 3.23% group. The protein efficiency ratio (PER) in 2.64% group was significantly higher than that in 2.44% and 3.23% groups (P < 0.05). The condition factor (CF) of fish was significantly higher in 2.81% group than that in 2.44% group (P < 0.05). Dietary arginine levels had no significant effect on hepatosomatic index (HSI), viscerosomatic index (VSI), and whole-body dry matter, crude protein, crude lipid, ash contents, as well as serum total protein (TP), triglyceride (TG), glucose (GLU), urea nitrogen (UN) contents and aspartate aminotransferase (AST), alanine aminotransferase (ALT) activities (P > 0.05). After the fish were challenged to ammonia-nitrogen for 72 h, their cumulative mortality rate in 2.81% group was significantly lower than that in 2.44% group (P < 0.05). The results suggested that dietary arginine level at 2.81% could optimize anti-ammonia-nitrogen stress ability of juvenile yellow catfish and a level of 3.23% arginine seemed to depress the growth performance of fish and decreased their tolerance to the ammonia-nitrogen stress under current study. A quadratic regression analysis based on WG indicated that the optimal dietary arginine requirement of juvenile yellow catfish was estimated to be 2.74% of the diet (6.45% of dietary protein) under current culture conditions.

Keywords: Ammonia-nitrogen stress; Arginine; Body composition; Growth performance; Serum biochemical indices; Yellow catfish (Pelteobagrus fulvidraco).