Ultrasound-assisted synthesis of N235-impregnated resins for vanadium (V) adsorption

R Soc Open Sci. 2018 Apr 25;5(4):171746. doi: 10.1098/rsos.171746. eCollection 2018 Apr.

Abstract

N235-impregnated resins were prepared using XAD-16HP macroporous adsorption resins as support with and without ultrasonic irradiation to evaluate the effects of ultrasound impregnation (UI) on the preparation and adsorption characteristics of the resins. The results show that the impregnation ratio of the solvent-impregnated resins (SIRs) prepared by ultrasound impregnation method (SIRs-UI) increases obviously but their adsorption capacity for V(V) just slightly increases and the utilization rate of the extractant decreases with the augmentation of ultrasound power. This may be caused by the fact that more extractant can enter into the deeper pores of the resins under high ultrasound intensity, but these extractants cannot effectively react with V(V). The impregnation equilibrium time of SIRs-UI can be obviously shortened in comparison to that of the SIRs prepared by conventional impregnation method (SIRs-CI) (3 min versus 240 min) due to the cavitation effect evoked by ultrasound. Ultrasonic irradiation may cause more N235 desorbed from the pores of the resin at low N235 content, resulting in lower adsorption capacity for V(V) than that of SIRs-CI, but the adsorption capacity is inverse at higher N235 content. N235 may be distributed more homogeneously in the pores of XAD-16HP with ultrasonic irradiation, thus, SIRs-UI presents higher adsorption capacity and stronger stability than SIRs-CI. This study manifests that ultrasound-assistant impregnation method may be a potential and promising technique for the preparation of SIRs.

Keywords: adsorption; solvent-impregnated resins; stability; ultrasound impregnation; vanadium.