Electronic, Magnetic, Half-Metallic, and Mechanical Properties of a New Equiatomic Quaternary Heusler Compound YRhTiGe: A First-Principles Study

Materials (Basel). 2018 May 15;11(5):797. doi: 10.3390/ma11050797.

Abstract

We apply First-principles theory to study the electronic structure as well as the magnetic and mechanical characteristics of YRhTiGe, a newly-designed Y-based quaternary equiatomic Heusler compound. This compound is half-metallic in nature with a ferromagnetic ground state. The total magnetic moment of YRhTiGe is 2 μB and it obeys the Slater-Pauling rule, Mt = Zt - 18, where Mt and Zt are the total magnetic moment and total number of valence electrons, respectively. The magnetic and half-metallic behaviors at its equilibrium and strained lattice constants have been discussed in detail. In addition, for FM-type YRhTiGe, its polycrystalline mechanical features such as Poisson's ratio, Lame constants, Kleinman parameter and hardness, are also computed according to the well-known Voigt-Reuss-Hill approximation. We investigate the mechanical anisotropy of YRhTiGe using the directional dependences of the Young's modulus and the shear modulus. Finally, we prove this compound is structurally and mechanically stable. This theoretical investigation provides further insight into the application of Y-based compounds as spintronic materials.

Keywords: Heusler compounds; electronic structure; first-principles calculation; magnetism; mechanical behaviors.