Structural modification of titanium surface by octacalcium phosphate via Pulsed Laser Deposition and chemical treatment

Bioact Mater. 2017 Mar 22;2(2):101-107. doi: 10.1016/j.bioactmat.2017.03.002. eCollection 2017 Jun.

Abstract

In the present study, the Pulsed Laser Deposition (PLD) technique was applied to coat titanium for orthopaedic and dental implant applications. Calcium carbonate (CC) was used as starting coating material. The deposited CC films were transformed into octacalcium phosphate (OCP) by chemical treatments. The results of X-ray diffraction (XRD), Raman, Fourier Transform Infrared Spectroscopy (FTIR) and scanning electron microscopy (SEM) studies revealed that the final OCP thin films are formed on the titanium surface. Human myofibroblasts from peripheral vessels and the primary bone marrow mesenchymal stromal cells (BMMSs) were cultured on the investigated materials. It was shown that all the investigated samples had no short-term toxic effects on cells. The rate of division of myofibroblast cells growing on the surface and saturated BMMSs concentration for the OCP coating were about two times faster than of cells growing on the CC films.

Keywords: Calcium carbonate; Coating; Octacalcium phosphate; Pulsed Laser Deposition; Titanium implants.