Robust Multilayer Graphene-Organic Frameworks for Selective Separation of Monovalent Anions

ACS Appl Mater Interfaces. 2018 May 30;10(21):18426-18433. doi: 10.1021/acsami.8b03839. Epub 2018 May 15.

Abstract

The chemical and mechanical stability of graphene nanosheets was used in this work to design a multilayer architecture of graphene, grafted with sulfonated 4,4'-diaminodiphenyl sulfone (SDDS). Quaternized poly(phenylene oxide) (QPPO) was synthesized and mixed with SDDS (rGO-SDDS-rGO@QPPO), yielding a multilayer graphene-organic framework (MGOF) with positive as well as negative functional groups that can be applied as a versatile electrodriven membrane in electrodialysis (ED). Multilayer graphene-organic frameworks are a new class of multilayer structures, with an architecture having a tunable interlayer spacing connected by cationic polymer material. MGOF membranes were demonstrated to allow for an excellent selective separation of monovalent anions in aqueous solution. Furthermore, different types of rGO-SDDS-rGO@QPPO membranes were found to have a good mechanical strength, with a tensile strength up to 66.43 MPa. The membrane (rGO-SDDS-rGO@QPPO-2) also has a low surface electric resistance (2.79 Ω·cm2) and a low water content (14.5%) and swelling rate (4.7%). In addition, the selective separation between Cl- and SO42- of the MGOF membranes could be as high as 36.6%.

Keywords: graphene oxide; monovalent anion exchange membrane; multilayer graphene−organic frameworks; quaternized polyphenylene oxide; selective separation of monovalent anions.