[Responses of dry matter, nitrogen accumulation and distribution and nitrogen utilization of pepper to new-type fertilizers in Guizhou yellow soil]

Ying Yong Sheng Tai Xue Bao. 2016 Sep;27(9):2983-2990. doi: 10.13287/j.1001-9332.201609.018.
[Article in Chinese]

Abstract

In order to explore the pepper yield responses to new-type fertilizers in yellow soil in Guizhou Province, a pot experiment, with the variety of "Bola 5", was conducted to estimate the effects of four new-type fertilizers, including water retaining fertilizer (BSX), stable slow release fertilizer (WDX), coated slow release fertilizer (BMX) and long-lasting nitrogen fertilizer (CXDF), on the accumulation and distribution of dry matter and nitrogen (N) uptake and N use efficiency. The results showed that the application of new-type fertilizers could significantly influence the accumulation and distribution of dry matter and shoot N uptake. Compared with dry matter accumulation, the start time and the end time of N accumulation during fast-growing period were advanced by 17-26 d and 28-45 d, respectively, and the duration of N accumulation in fast-growing period was shorter by 7-23 d, which indicated that the occurrence time of N accumulation was prior to the accumulation of dry matter. In contrast to the common compound fertilizer (FHF) treatment, the occurrence time of dry matter and nitrogen accumulation in the treatments with new-type fertili-zers (BSX, WDX, BMX and CXDF) were obviously lagged, and the lag time was longest in the BMX treatment. However, it had a shorter duration of fast-growing stage and a maximum accumulation rate for the WDX treatment, revealing that WDX could realize the high nutrient use efficiency in a short time. The post-anthesis dry matter and N accumulation accounted for 63.0%, 20.1% and 73.3%, 20.5% for the BSX and BMX treatments, respectively, while these proportions for the WDX were 59.3% and 11.6%, respectively. This indicated that BSX and BMX were beneficial to promote dry matter and N assimilation after flowering, while WDX was conducive to dry matter and nutrients accumulation before flowering. Compared with the FHF treatment, new-type fertilizers (BSX, WDX and BMX) application could significantly improve N use efficiency. Nitrogen partial productivity, nitrogen agronomic efficiency and nitrogen apparent utilization rate of the WDX treatment were the highest, with the average of 66.74 kg·kg-1, 44.28 kg·kg-1 and 54.7%, respectively. Consequently, these four new-type fertilizers were sui-table for pepper cultivation in Guizhou, in which the yield response to the WDX was the best.

为探索贵州黄壤区施用新型肥料对辣椒种植的增产效应,通过盆栽试验研究了保水型(BSX)、稳定性(WDX)、包膜型(BMX)缓释肥和长效氮肥(CXDF)4种新型肥料对‘博辣5号’辣椒的干物质、氮素积累与分配,以及氮素利用效率的影响.结果表明: 施用新型肥料可以明显影响辣椒干物质和氮素的积累与分配,辣椒氮素积累快速增长开始时间和结束时间较干物质分别提前17~26 d和28~45 d,且氮素积累快速增长持续期也较干物质缩短7~23 d,表明氮素积累的发生时间要先于干物质积累;与普通复合肥(FHF)处理相比,新型肥料处理的干物质和氮素积累均出现明显滞后,以BMX处理的滞后时间最长,但是WDX处理的快速增长持续期较短且最大积累速率最高,说明稳定性缓释肥可实现养分短时间内的高效利用;BSX和BMX处理的花后干物质和氮素积累量占总干物质和总氮的比例分别为62.9%和20.1%、73.3%和20.5%,而WDX处理则分别为59.3%和11.6%,说明保水型和包膜型缓释肥相对有利于辣椒花后干物质积累和氮素同化,而稳定性缓释肥则更有利于花前干物质和养分积累;与FHF处理相比,施用新型肥料(保水型、稳定性和包膜型缓释肥)可显著提高辣椒的氮素利用效率,以稳定性缓释肥的氮肥偏生产力、氮肥农学效率和氮肥表观利用率最高,分别为66.74 kg·kg-1、44.28 kg·kg-1和54.6%.新型肥料适用于贵州辣椒种植栽培,以稳定性缓释肥的施用效果最佳.

Keywords: accumulation and distribution; dry matter; new-type fertilizer; nitrogen; pepper in Guizhou.

MeSH terms

  • Capsicum / growth & development*
  • China
  • Fertilizers*
  • Nitrogen / chemistry*
  • Soil / chemistry*
  • Vegetables / growth & development

Substances

  • Fertilizers
  • Soil
  • Nitrogen