[Biomass and morphological characteristics of fine roots and their affecting factors in diffe-rent vegetation restoration stages in depressions between karst hills]

Ying Yong Sheng Tai Xue Bao. 2018 Mar;29(3):783-789. doi: 10.13287/j.1001-9332.201803.006.
[Article in Chinese]

Abstract

This study focused on four vegetation restoration stages of grasslands, shrublands, secondary forests and primary forests in the typical karst peak-cluster depression. The soil core method was used to collect fine roots with 2 mm or less in diameter in three layers (0-10, 10-20, 20-30 cm). The biomass, morphological characteristics of fine roots and their relationship with soil properties were analyzed. The results showed that fine root biomass ranged between 194.63 and 255.19 g·cm-2 in different vegetation restoration stages. Most of fine roots distributed in the surface soil of 0-10 cm, which accounted for more than 60% of the total biomass in the soil layer of 0-30 cm. No significant difference was found among different stages in fine root biomass. There was significant difference among different stages in the specific root length and specific surface area of fine roots. Both parameters were gradually decreased with vegetation forward restoration from grassland to primary forest. More than 66% root length and 64% root area were distributed in the surface soil of 0-10 cm. The length and area of most of the fine root were in the diameter class of 0-0.5 mm and 0.5-1mm, respectively. These two levels of the root length and root area accounted for more than 87% and 72% of the total amount, respectively. Results from the redundancy analysis showed that there were different correlations between karst peak-cluster depression vegetation community characteristics and soil properties, with soil organic carbon, available potassium, and total nitrogen having a great influence on the characteristics of fine roots. It is an effective strategy for plants to better adapt to the habitats.

以喀斯特峰丛洼地不同植被恢复阶段的草丛、灌丛、次生林和原生林为研究对象,采用土芯法,分 0~10、10~20、20~30 cm等3层获取群落活细根(直径≤2 mm),分析其生物量、形态特征及其与土壤性状的关系.结果表明: 各恢复阶段细根生物量为194.63~255.19 g·m-2,集中分布在0~10 cm表层土壤中,占0~30 cm土层总生物量60%以上,不同恢复阶段群落生物量的差异不显著;细根比根长和比表面积在不同恢复阶段差异显著,随着植被由草丛向原生林正向恢复而逐渐降低;超过66%的根长和64%的根面积分布在0~10 cm表层土壤中,多数细根根长和根面积均在0~0.5 mm和0.5~1 mm径级,这两级根长和根面积占其总量的87%和72%以上.冗余分析表明,喀斯特峰丛洼地植物群落细根特征与土壤性状之间存在着不同的相关性,其中土壤有机碳、速效钾和全氮对细根特征影响较大.这是植物长期适应生境条件形成的有效策略.

Keywords: fine root; karst; morphological trait; restoration stage; soil nutrient.

MeSH terms

  • Biomass
  • Environmental Restoration and Remediation*
  • Forests
  • Grassland
  • Plant Roots*
  • Plants
  • Soil

Substances

  • Soil