Isolation and Characterization of Two New Secondary Metabolites From Quercus incana and Their Antidepressant- and Anxiolytic-Like Potential

Front Pharmacol. 2018 Apr 18:9:298. doi: 10.3389/fphar.2018.00298. eCollection 2018.

Abstract

The ethyl acetate fraction of Quercus incana yielded two new compounds [1 and 2]. The characterization and structure elucidation of these compounds were carried out through various spectroscopic techniques such as mass spectrometry along with one- and two-dimensional NMR techniques. The structural formula was deduced to be 2-(4-hydroxybutan-2-yl)-5-methoxyphenol [1] and 4-hydroxy-3-(hydroxymethyl) pentanoic acid [2]. The elevated plus maze (EPM) and light-dark box (LDB) tests (classical mouse models) were performed in order to reveal the anxiolytic potential of both compounds [1 and 2]. Both compounds displayed dose-dependent increases in open-arm entries and time spent in open arms in EPM (P < 0.05, ∗∗P < 0.01), and increased the time spent in the lit compartment and increased transitions between the two compartments in LDB test (P < 0.05, ∗∗P < 0.01). Co-administration of selective benzodiazepine (BZP) receptor antagonist, flumazenil (2.5 mg/kg) with compounds [1 and 2] decreased the anxiolytic-like activity of both compounds in the EPM indicating BZP-binding site of GABA-A receptors are involved in the anxiolytic-like effect. Similarly, both compounds at the dose level of 10 and 30 mg/kg, i.p. exerted pronounced antidepressant-like effect in both forced swimming as well as tail suspension tests (P < 0.05, ∗∗P < 0.01; ANOVA followed by Dunnett's post hoc test). The effect at 30 mg/kg was comparable to the reference drug imipramine (60 mg/kg).

Keywords: Quercus incana; anxiolytic- and antidepressant-like effect; aromatic acid; diazepam; flumazenil.