Improvement of non-alcoholic steatohepatitis by hepatocyte-like cells generated from iPSCs with Oct4/Sox2/Klf4/Parp1

Oncotarget. 2018 Jan 2;9(26):18594-18606. doi: 10.18632/oncotarget.23603. eCollection 2018 Apr 6.

Abstract

The prevalence of nonalcoholic fatty liver disease (NAFLD) is usually increased with age. Non-alcoholic steatohepatitis (NASH), a serious form of NAFLD, may lead to cirrhosis and end-stage liver diseases. Induced pluripotent stem cells (iPSCs) hold promising potential in personalized medicine. Although obviation of c-Myc reduces tumorigenic risk, it also largely reduced the generation of iPSCs. Recently, Poly(ADP-ribose) polymerase 1 (Parp1) has been reported to enhance cell reprogramming. In this study, we demonstrated that forced expression of Oct4/Sox2/Klf4/Parp1 (OSKP) effectively promoted iPSC generation from senescent somatic cells from 18-month-old mouse. The iPSCs presented regular pluripotent properties, ability to form smaller teratoma with smaller size, and the potential for tridermal differentiation including hepatocyte-like cells (OSKP-iPSC-Heps). Resembled to fetal hepatocytes but not senescent hepatocytes, these OSKP-iPSC-Heps possessed antioxidant ability and were resistant to oxidative insult induced by H2O2 or exogenous fatty acid. Intrasplenic transplantation of OSKP-iPSC-Heps ameliorated the triglyceride over-accumulation and hepatitis, prevented the production of inflammatory cytokines and oxidative substances, and reduced apoptotic cells in methionine/choline-deficient diet (MCDD)-fed mice. In conclusion, we demonstrated that Parp-1 promoted iPSC generation from senescent cells, which can be used for the treatment of NASH after hepatic-specific differentiation. These findings indicated that patient-derived iPSC-Heps may offer an alternative option for treatment of NASH and NASH-associated end-stage liver diseases.

Keywords: induced pluripotent stem cells; non-alcoholic steatohepatitis.