miR-7 Replacement Therapy in Parkinson's Disease

Curr Gene Ther. 2018;18(3):143-153. doi: 10.2174/1566523218666180430121323.

Abstract

The present review examines whether the microRNA 7 (miR-7) holds potential for slowing Parkinson's disease (PD) progression. First, the accurate expression of miR-7 allows for normal development, physiology, and neurogenesis in the central nervous system, also keeping alpha-synuclein (α-Syn) at the physiological level. Second, patients with PD and parkinsonian MPTP-induced animals exhibit a significant decrease of miR-7 in brain areas associated with dopaminergic neurodegeneration. Depletion of miR-7 in the substantia nigra of clinical samples is related to α-Syn accumulation, loss of dopaminergic cells, and reduction of dopamine in the striatum. Therefore, the goal of a miR-7- replacement therapy is to downregulate α-Syn and other PD-related genes, achieving multi-target benefits regarding oxidative stress, mitochondrial health, cell glycolysis, apoptosis, and inhibition of inflammasome activation. While a disease-modifying drug is a major unmet need for the clinical management of PD, an miR-7-replacement therapy presents a striking potential against critical mechanisms of neuropathology. Such innovative treatment would reduce α-Syn accumulation in the Lewy bodies and preserve remaining neurons yet viable at the time of diagnosis, thus slowing disease progression from the early phase of PD characterized by a relatively mild motor impairment to an advanced and more disabling stage.

Keywords: Lewy body; MicroRNA; Neurodegeneration; Parkinson's disease; RNAi; Synuclein; Synucleinopathy; miR-7..

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Gene Expression Regulation*
  • Genetic Therapy*
  • Humans
  • MicroRNAs / genetics*
  • Parkinson Disease / genetics
  • Parkinson Disease / therapy*

Substances

  • MIRN7 microRNA, human
  • MicroRNAs