Thermal liquid biopsy for monitoring melanoma patients under surveillance during treatment: A pilot study

Biochim Biophys Acta Gen Subj. 2018 Aug;1862(8):1701-1710. doi: 10.1016/j.bbagen.2018.04.020. Epub 2018 Apr 26.

Abstract

Background: Differential Scanning Calorimetry (DSC) is a technique traditionally used to study thermally induced macromolecular transitions, and it has recently been proposed as a novel approach for diagnosis and monitoring of several diseases. We report a pilot study applying Thermal Liquid Biopsy (TLB, DSC thermograms of plasma samples) as a new clinical approach for diagnostic assessment of melanoma patients.

Methods: Multiparametric analysis of DSC thermograms of patient plasma samples collected during treatment and surveillance (63 samples from 10 patients) were compared with clinical and diagnostic imaging assessment to determine the utility of thermograms for diagnostic assessment in melanoma. Nine of the ten patients were stage 2 or 3 melanoma subjects receiving adjuvant therapy after surgical resection of their melanomas. The other patient had unresectable stage 4 melanoma and was treated with immunotherapy. Two reference groups were used: (A) 36 healthy subjects and (B) 13 samples from 8 melanoma patients who had completed successful surgical management of their disease and were determined by continued clinical assessment to have no evidence of disease.

Results: Plasma thermogram analysis applied to melanoma patients generally agrees with clinical evaluation determined by physical assessment or diagnostic imaging (~80% agreement). No false negatives were obtained from DSC thermograms. Importantly, this methodology was able to detect changes in disease status before it was identified clinically.

Conclusions: Thermal Liquid Biopsy could be used in combination with current clinical assessment for the earlier detection of melanoma recurrence and metastasis.

General significance: TLB offers advantages over current diagnostic techniques (PET/CT imaging), limited in frequency by radiation burden and expense, in providing a minimally-invasive, low-risk, low-cost clinical test for more frequent personalized patient monitoring to assess recurrence and facilitate clinical decision-making.

Keywords: Differential scanning calorimetry (DSC); Early diagnostic and prognostic; Melanoma; Non-invasive test; Patient surveillance.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Calorimetry, Differential Scanning
  • Case-Control Studies
  • Differential Thermal Analysis
  • Female
  • Humans
  • Liquid Biopsy
  • Male
  • Melanoma / blood
  • Melanoma / pathology*
  • Melanoma / therapy
  • Middle Aged
  • Monitoring, Physiologic / methods*
  • Neoplasm Recurrence, Local / blood
  • Neoplasm Recurrence, Local / pathology*
  • Neoplasm Recurrence, Local / therapy
  • Pilot Projects