Dosimetric effects of bolus and lens shielding in treating ocular lymphomas with low-energy electrons

Med Dosim. 2019;44(1):35-42. doi: 10.1016/j.meddos.2018.01.005. Epub 2018 Apr 23.

Abstract

Radiation therapy is an effective treatment for primary orbital lymphomas. Lens shielding with electrons can reduce the risk of high-grade cataracts in patients undergoing treatment for superficial tumors. This work evaluates the dosimetric effects of a suspended eye shield, placement of bolus, and varying electron energies. Film (GafChromic EBT3) dosimetry and relative output factors were measured for 6, 8, and 10 MeV electron energies. A customized 5-cm diameter circle electron orbital cutout was constructed for a 6 × 6-cm applicator with a suspended lens shield (8-mm diameter Cerrobend cylinder, 2.2-cm length). Point doses were measured using a scanning electron diode in a solid water phantom at depths representative of the anterior and posterior lens. Depth dose profiles were compared for 0-mm, 3-mm, and 5-mm bolus thicknesses. At 5 mm (the approximate distance of the anterior lens from the surface of the cornea), the percent depth dose under the suspended lens shield was reduced to 15%, 15%, and 14% for electron energies 6, 8, and 10 MeV, respectively. Applying bolus reduced the benefit of lens shielding by increasing the estimated doses under the block to 27% for 3-mm and 44% for 5-mm bolus for a 6 MeV incident electron beam. This effect is minimized with 8 MeV electron beams where the corresponding values were 15.5% and 18% for 3-mm and 5-mm bolus. Introduction of a 7-mm hole in 5-mm bolus to stabilize eye motion during treatment altered lens doses by about 1%. Careful selection of electron energy and consideration of bolus effects are needed to account for electron scatter under a lens shield.

Keywords: Bolus; Dosimetry; Lens shielding; Ocular lymphoma.

Publication types

  • Comparative Study

MeSH terms

  • Electrons / therapeutic use*
  • Eye Neoplasms / radiotherapy*
  • Humans
  • Lymphoma, B-Cell, Marginal Zone / radiotherapy*
  • Organ Sparing Treatments / methods*
  • Radiometry