Abscisic acid-induced degradation of Arabidopsis guanine nucleotide exchange factor requires calcium-dependent protein kinases

Proc Natl Acad Sci U S A. 2018 May 8;115(19):E4522-E4531. doi: 10.1073/pnas.1719659115. Epub 2018 Apr 23.

Abstract

Abscisic acid (ABA) plays essential roles in plant development and responses to environmental stress. ABA induces subcellular translocation and degradation of the guanine nucleotide exchange factor RopGEF1, thus facilitating ABA core signal transduction. However, the underlying mechanisms for ABA-triggered RopGEF1 trafficking/degradation remain unknown. Studies have revealed that RopGEFs associate with receptor-like kinases to convey developmental signals to small ROP GTPases. However, how the activities of RopGEFs are modulated is not well understood. Type 2C protein phosphatases stabilize the RopGEF1 protein, indicating that phosphorylation may trigger RopGEF1 trafficking and degradation. We have screened inhibitors followed by several protein kinase mutants and find that quadruple-mutant plants in the Arabidopsis calcium-dependent protein kinases (CPKs) cpk3/4/6/11 disrupt ABA-induced trafficking and degradation of RopGEF1. Moreover, cpk3/4/6/11 partially impairs ABA inhibition of cotyledon emergence. Several CPKs interact with RopGEF1. CPK4 binds to and phosphorylates RopGEF1 and promotes the degradation of RopGEF1. CPK-mediated phosphorylation of RopGEF1 at specific N-terminal serine residues causes the degradation of RopGEF1 and mutation of these sites also compromises the RopGEF1 overexpression phenotype in root hair development in Arabidopsis Our findings establish the physiological and molecular functions and relevance of CPKs in regulation of RopGEF1 and illuminate physiological roles of a CPK-GEF-ROP module in ABA signaling and plant development. We further discuss that CPK-dependent RopGEF degradation during abiotic stress could provide a mechanism for down-regulation of RopGEF-dependent growth responses.

Keywords: ABA; CPK; RopGEF; abiotic stress; protein phosphorylation and degradation.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Abscisic Acid / pharmacology*
  • Arabidopsis / drug effects
  • Arabidopsis / genetics
  • Arabidopsis / growth & development*
  • Arabidopsis / metabolism
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism*
  • Calcium-Calmodulin-Dependent Protein Kinases / genetics
  • Calcium-Calmodulin-Dependent Protein Kinases / metabolism*
  • Gene Expression Regulation, Plant / drug effects*
  • Guanine Nucleotide Exchange Factors / genetics
  • Guanine Nucleotide Exchange Factors / metabolism*
  • Phosphorylation / drug effects
  • Plant Growth Regulators / pharmacology
  • Plant Roots / genetics
  • Plant Roots / growth & development*
  • Plant Roots / metabolism
  • Protein Transport
  • Proteolysis / drug effects*
  • Signal Transduction / drug effects

Substances

  • Arabidopsis Proteins
  • Guanine Nucleotide Exchange Factors
  • Plant Growth Regulators
  • RopGEF1 protein, Arabidopsis
  • Abscisic Acid
  • CPK4 protein, Arabidopsis
  • Calcium-Calmodulin-Dependent Protein Kinases