A switch point in the molecular chaperone Hsp90 responding to client interaction

Nat Commun. 2018 Apr 16;9(1):1472. doi: 10.1038/s41467-018-03946-x.

Abstract

Heat shock protein 90 (Hsp90) is a dimeric molecular chaperone that undergoes large conformational changes during its functional cycle. It has been established that conformational switch points exist in the N-terminal (Hsp90-N) and C-terminal (Hsp90-C) domains of Hsp90, however information for switch points in the large middle-domain (Hsp90-M) is scarce. Here we report on a tryptophan residue in Hsp90-M as a new type of switch point. Our study shows that this conserved tryptophan senses the interaction of Hsp90 with a stringent client protein and transfers this information via a cation-π interaction with a neighboring lysine. Mutations at this position hamper the communication between domains and the ability of a client protein to affect the Hsp90 cycle. The residue thus allows Hsp90 to transmit information on the binding of a client from Hsp90-M to Hsp90-N which is important for progression of the conformational cycle and the efficient processing of client proteins.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphatases / chemistry*
  • Adenosine Triphosphatases / genetics
  • Adenosine Triphosphatases / metabolism
  • Amino Acid Sequence
  • Amino Acid Substitution
  • Animals
  • Binding Sites
  • Caenorhabditis elegans / chemistry
  • Cloning, Molecular
  • Crystallography, X-Ray
  • Escherichia coli / genetics
  • Escherichia coli / metabolism
  • Gene Expression
  • Genetic Vectors / chemistry
  • Genetic Vectors / metabolism
  • HSP90 Heat-Shock Proteins / chemistry*
  • HSP90 Heat-Shock Proteins / genetics
  • HSP90 Heat-Shock Proteins / metabolism
  • Humans
  • Ligands
  • Lysine / chemistry*
  • Lysine / metabolism
  • Mice
  • Molecular Dynamics Simulation
  • Mutation*
  • Protein Binding
  • Protein Conformation, alpha-Helical
  • Protein Conformation, beta-Strand
  • Protein Interaction Domains and Motifs
  • Recombinant Proteins / chemistry
  • Recombinant Proteins / genetics
  • Recombinant Proteins / metabolism
  • Saccharomyces cerevisiae / chemistry
  • Sequence Alignment
  • Structural Homology, Protein
  • Tryptophan / chemistry*
  • Tryptophan / metabolism
  • Zebrafish / metabolism

Substances

  • HSP90 Heat-Shock Proteins
  • Ligands
  • Recombinant Proteins
  • Tryptophan
  • Adenosine Triphosphatases
  • Lysine