Cardioprotection by intermittent hypoxia conditioning: evidence, mechanisms, and therapeutic potential

Am J Physiol Heart Circ Physiol. 2018 Aug 1;315(2):H216-H232. doi: 10.1152/ajpheart.00060.2018. Epub 2018 Apr 13.

Abstract

The calibrated application of limited-duration, cyclic, moderately intense hypoxia-reoxygenation increases cardiac resistance to ischemia-reperfusion stress. These intermittent hypoxic conditioning (IHC) programs consistently produce striking reductions in myocardial infarction and ventricular tachyarrhythmias after coronary artery occlusion and reperfusion and, in many cases, improve contractile function and coronary blood flow. These IHC protocols are fundamentally different from those used to simulate sleep apnea, a recognized cardiovascular risk factor. In clinical studies, IHC improved exercise capacity and decreased arrhythmias in patients with coronary artery or pulmonary disease and produced robust, persistent, antihypertensive effects in patients with essential hypertension. The protection afforded by IHC develops gradually and depends on β-adrenergic, δ-opioidergic, and reactive oxygen-nitrogen signaling pathways that use protein kinases and adaptive transcription factors. In summary, adaptation to intermittent hypoxia offers a practical, largely unrecognized means of protecting myocardium from impending ischemia. The myocardial and perhaps broader systemic protection provided by IHC clearly merits further evaluation as a discrete intervention and as a potential complement to conventional pharmaceutical and surgical interventions.

Keywords: enkephalin; glycolysis; mitochondrial permeability transition; myocardial ischemia; nitric oxide; protein kinase; reactive oxygen species; sarcoplasmic reticulum.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Cardiovascular Diseases / prevention & control
  • Cardiovascular Diseases / therapy*
  • Humans
  • Ischemic Preconditioning, Myocardial / methods*
  • Physical Conditioning, Human / methods*