Vascularized Thymosternal Composite Tissue Allo- and Xenotransplantation in Nonhuman Primates: Initial Experience

Plast Reconstr Surg Glob Open. 2017 Dec 22;5(12):e1538. doi: 10.1097/GOX.0000000000001538. eCollection 2017 Dec.

Abstract

Background: Vascularized composite allotransplantation is constrained by complications associated with standard immunosuppressive strategies. Vascularized thymus and bone marrow have been shown to promote prolonged graft survival in composite organ and soft-tissue vascularized composite allotransplantation models. We report development of a nonhuman primate vascularized thymosternal composite tissue transplant model as a platform to address donor-specific immune tolerance induction strategies.

Methods: Vascularized thymosternal allograft (skin, muscle, thymus, sternal bone) was transplanted between MHC-mismatched rhesus monkeys (feasibility studies) and baboons (long-term survival studies), with end-to-side anastomoses of the donor aorta and SVC to the recipient common femoral vessels. A male allograft was transplanted to a female's lower abdominal wall, and clinically applicable immunosuppression was given. Skin biopsies and immunological assays were completed at regular intervals, and chimerism was quantified using polymerase chain reaction specific for baboon Y chromosome.

Results: Four allo- and 2 xenotransplants were performed, demonstrating consistent technical feasibility. In 1 baboon thymosternal allograft recipient treated with anti-CD40-based immunosuppression, loss of peripheral blood microchimerism after day 5 was observed and anticipated graft rejection at 13 days. In the second allograft, when cutaneous erythema and ecchymosis with allograft swelling was treated with anti-thymocyte globulin starting on day 6, microchimerism persisted until immunosuppression was reduced after the first month, and the allograft survived to 87 days, 1 month after cessation of immunosuppression treatment.

Conclusions: We established both allo- and xeno- composite vascularized thymosternal transplant preclinical models, which will be useful to investigate the role of primarily vascularized donor bone marrow and thymus.