Perspectives of Attosecond Spectroscopy for the Understanding of Fundamental Electron Correlations

Angew Chem Int Ed Engl. 2018 May 4;57(19):5228-5247. doi: 10.1002/anie.201702759. Epub 2018 Apr 6.

Abstract

The description of the electronic structure of molecules in terms of molecular orbitals is a highly successful concept in chemistry. However, it commonly fails if the electrons in a molecule are strongly correlated and cannot be treated as independent particles. Electron correlation is essential to understand inner-valence X-ray spectroscopies, it can drive ultrafast charge migration in molecules, and it is responsible for many exotic properties of strongly correlated materials. Time-resolved spectroscopy with attosecond resolution is generally capable of following electronic motion in real time and can thus provide experimental access to electron-correlation-driven phenomena. High-harmonic spectroscopy in particular uses the precisely timed laser-driven recollision of electrons to interrogate the electronic structure and dynamics of the investigated system on a sub-femtosecond timescale. In this Review, the capabilities of high-harmonic spectroscopy to follow electronic motion in molecules are discussed. Both qualitative and quantitative approaches to unraveling the detailed dynamical responses of molecular systems following ionization are presented. A new theoretical formalism for the reconstruction of correlation-driven charge migration is introduced. The importance of electron-ion entanglement and electronic coherence in the reconstruction of attosecond hole dynamics are discussed. These advances make high-harmonic spectroscopy a promising technique to decode fundamental electron correlations and to provide experimental data on the complex manifestations of multi-electron dynamics.

Keywords: attosecond spectroscopy; charge migration; electron correlation; high-harmonic generation; quantum chemistry.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't