Improved luminescence properties of MoS2 monolayers grown via MOCVD: role of pre-treatment and growth parameters

Nanotechnology. 2018 Jul 20;29(29):295704. doi: 10.1088/1361-6528/aabbb9. Epub 2018 Apr 5.

Abstract

Fabrication of transition metal dichalcogenides (TMDCs) via metalorganic chemical vapor deposition (MOCVD) represents one of the most attractive routes to large-scale 2D material layers. Although good homogeneity and electrical conductance have been reported recently, the relation between growth parameters and photoluminescence (PL) intensity-one of the most important parameters for optoelectronic applications-has not yet been discussed for MOCVD TMDCs. In this work, MoS2 is grown via MOCVD on sapphire (0001) substrates using molybdenum hexacarbonyl (Mo(CO)6, MCO) and di-tert-butyl sulphide as precursor materials. A prebake step under H2 atmosphere combined with a reduced MCO precursor flow increases the crystal grain size by one order of magnitude and strongly enhances PL intensity with a clear correlation to the grain size. A decrease of the linewidth of both Raman resonances and PL spectra down to full width at half maxima of 3.2 cm-1 for the E 2g Raman mode and 60 meV for the overall PL spectrum indicate a reduced defect density at optimized growth conditions.