Effect of maternal foraging habitat on offspring quality in the loggerhead sea turtle (Caretta caretta)

Ecol Evol. 2018 Feb 27;8(6):3543-3555. doi: 10.1002/ece3.3938. eCollection 2018 Mar.

Abstract

Exploring a trade-off between quantity and quality of offspring allows differences in the fitness between alternative life histories to be accurately evaluated. We addressed the mechanism that maintains alternative life histories (small oceanic planktivores vs. large neritic benthivores) observed in a loggerhead sea turtle (Caretta caretta) population, which has been suggested to be environmental, based on the lack of genetic structure and a large difference in reproductive output. We examined whether maternal foraging habitat affects offspring quality, by measuring the morphology, emergence success, and righting response of hatchlings following incubation in a common open sand area over the whole nesting season at Yakushima Island, Japan, and by recording early growth and survival of offspring that were reared in a common environment at a Japanese aquarium. Furthermore, we tested whether sea turtles adjust egg size in response to temporal shifts of the incubation environment. There were no significant differences in any hatchling traits between oceanic and neritic foragers (which were classified by stable isotope ratios), except for clutches laid during the warmest period of the nesting season. There were also no significant differences in the growth and survival of offspring originating from the two foragers. The size of eggs from both foragers significantly increased as the season progressed, even though the rookery had heavy rainfall, negating the need to counteract heat-related reduction in hatchling morphology. In comparison, the sizes of adult body and clutches from both foragers did not vary significantly. The results further support our previous suggestions that the size-related foraging dichotomy exhibited by adult sea turtles does not have a genetic basis, but derives from phenotypic plasticity. Adjustment in reproductive investment may be associated with: (1) predation avoidance, (2) founder effect, and/or (3) annual variation in egg size.

Keywords: intrapopulation variation; migration; polymorphism; reptile; resource allocation.