The impact of climatic variations on the reproductive success of Gentiana lutea L. in a Mediterranean mountain area

Int J Biometeorol. 2018 Jul;62(7):1283-1295. doi: 10.1007/s00484-018-1533-3. Epub 2018 Mar 30.

Abstract

Increases in temperature have been predicted and reported for the Mediterranean mountain ranges due to global warming and this phenomenon is expected to have profound consequences on biodiversity and ecosystem functioning. We hereby present the case of Gentiana lutea L. subsp. lutea, a rhizomatous long-lived plant living in Central-Southern Europe, which is at the edge of its ecological and distributional range in Sardinia. Concretely, we analysed the reproductive success experienced during three phenological cycles (2013/2014, 2014/2015 and 2015/2016) in four representative populations, with particular attention to the phenological cycle of 2014/2015, which has been recorded as one of the warmest periods of the last decades. The Smirnov-Grubbs test was used to evaluate differences in temperature and precipitation regimes among historical data and the analysed years, while the Kruskal-Wallis followed by the Wilcoxon test was used to measure differences between anthesis and reproductive performances among cycles and populations. In addition, generalised linear models were carried out to check relationships between climate variables and reproductive performance. Significant differences among climate variables and analysed cycles were highlighted, especially for maximum and mean temperatures. Such variations determined a non-flowering stage in two of the four analysed populations in 2014/2015 and significant differences of further five reproductive traits among cycles. These results confirmed that in current unstable climatic conditions, which are particularly evident in seasonal climates, reproductive success can be a sensitive and easily observable indicator of climatic anomalies. Considering the importance of this issue and the ease and cost-effectiveness of reproductive success monitoring, we argue that research in this sense can be a supporting tool for the enhancement of future crucial targets such as biodiversity conservation and the mitigation of global warming effects.

Keywords: Climate anomalies; Gentianaceae; Global warming; Historical climate data; Sardinia; Soil temperatures.

MeSH terms

  • Climate Change*
  • Ecosystem
  • Gentiana / physiology*
  • Italy
  • Reproduction*
  • Temperature