Looking for New Inhibitors for the Epidermal Growth Factor Receptor

Curr Top Med Chem. 2018;18(3):219-232. doi: 10.2174/1568026618666180329123023.

Abstract

Epidermal Growth Factor Receptor (EGFR) is still the main target of the Head and Neck Squamous Cell Cancer (HNSCC) because its overexpression has been detected in more than 90% of this type of cancer. This overexpression is usually linked with more aggressive disease, increased resistance to chemotherapy and radiotherapy, increased metastasis, inhibition of apoptosis, promotion of neoplastic angiogenesis, and, finally, poor prognosis and decreased survival. Due to this reason, the main target in the search of new drugs and inhibitors candidates is to downturn this overexpression. Quantitative Structure-Activity Relationship (QSAR) is one of the most widely used approaches while looking for new and more active inhibitors drugs. In this contest, a lot of authors used this technique, combined with others, to find new drugs or enhance the activity of well-known inhibitors. In this paper, on one hand, we will review the most important QSAR approaches developed in the last fifteen years, spacing from classical 1D approaches until more sophisticated 3D; the first paper is dated 2003 while the last one is from 2017. On the other hand, we will present a completely new QSAR approach aimed at the prediction of new EGFR inhibitors drugs. The model presented here has been developed over a dataset consisting of more than 1000 compounds using various molecular descriptors calculated with the DRAGON 7.0© software.

Keywords: Classification and Regression Techniques; Drug Design; Epidermal Growth Factor Receptor; Head and Neck Squamous Cell Carcinoma; Machine Learning; Quantitative Structure Activity Relationships (QSAR); Tyrosine Kinase Inhibitors..

Publication types

  • Review

MeSH terms

  • Carcinoma, Squamous Cell / drug therapy*
  • Dose-Response Relationship, Drug
  • Drug Screening Assays, Antitumor
  • ErbB Receptors / antagonists & inhibitors*
  • ErbB Receptors / metabolism
  • Head and Neck Neoplasms / drug therapy*
  • Humans
  • Molecular Dynamics Simulation
  • Protein Kinase Inhibitors / chemistry
  • Protein Kinase Inhibitors / pharmacology*
  • Quantitative Structure-Activity Relationship

Substances

  • Protein Kinase Inhibitors
  • EGFR protein, human
  • ErbB Receptors