Fish Community Structure and Diet Responses to Newbury Weirs in a Low-Gradient River

Environ Manage. 2018 Jun;61(6):928-938. doi: 10.1007/s00267-018-1022-9. Epub 2018 Mar 27.

Abstract

Restoration projects are often implemented to address specific issues in the environment. Consequences of a restoration project, if any are measured, typically focus on direct changes to the projects focus. However, changing habitat structure likely results in changes to the environment that affect the communities living there. Rock weirs have been used for channel stabilization in many midwestern rivers. Previous research in a southern Illinois river found that weirs benefitted aquatic macroinvertebrate and riparian bird communities by enhancing habitat heterogeneity and insect emergence production. We hypothesized that fishes would also benefit from weirs through enhanced habitat and food availability. We collected fishes in the Cache River in southern Illinois using hand nets, seines, and electroshocking at sites where weirs had been installed and at non-weir sites. Gut contents were identified and individual food items measured. Fish species richness, but not diversity, was higher at weir sites. Fish communities also differed between site types, with benthic feeders characterizing weir sites. Gut content biomass and abundance differed among fish guilds but not between weir and non-weir sites. Fishes from both site types selected for prey taxa predominately found at weirs. Differences between site types were not always captured by univariate metrics, but connecting fish prey to habitat suggests a reach-scale benefit for fishes through increased abundance of favored prey and enhanced prey diversity. Additionally, given the paucity of rocky substrata in the river as a whole, rock weirs enhance fish species richness by providing habitat for less common benthic species.

Keywords: Fish diets; Habitat heterogeneity; Rock weirs; Stream restoration.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Biodiversity
  • Biomass
  • Diet*
  • Ecosystem*
  • Fishes / classification*
  • Fishes / growth & development
  • Illinois
  • Rivers / chemistry*
  • Water Movements*