Predation scars may influence host susceptibility to pathogens: evaluating the role of corallivores as vectors of coral disease

Sci Rep. 2018 Mar 27;8(1):5258. doi: 10.1038/s41598-018-23361-y.

Abstract

Infectious diseases not regulated by host density, such as vector-borne diseases, have the potential to drive population declines and extinctions. Here we test the vector potential of the snail Drupella sp. and butterflyfish Chaetodon plebeius for two coral diseases, black band (BBD) and brown band (BrB) disease. Drupella transmitted BrB to healthy corals in 40% of cases immediately following feeding on infected corals, and even in 12% of cases 12 and 24 hours following feeding. However, Drupella was unable to transmit BBD in either transmission treatment. In a field experiment testing the vector potential of naturally-occurring fish assemblages, equivalent numbers of caged and uncaged coral fragments became infected with either BrB, BBD or skeletal eroding band, indicating that corallivorous fish were unlikely to have caused transmission. In aquaria, C. plebeius did not transmit either BBD or BrB, even following extended feeding on both infected and healthy nubbins. A literature review confirmed only four known coral disease vectors, all invertebrates, corroborating our conclusion that polyp-feeding fishes are unlikely to be vectors of coral diseases. This potentially because polyp-feeding fishes produce shallow lesions, not allowing pathogens to invade coral tissues. In contrast, corallivorous invertebrates that create deeper feeding scars increase pathogens transmission.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Anthozoa / microbiology*
  • Anthozoa / physiology
  • Cicatrix / complications
  • Cicatrix / microbiology
  • Cicatrix / veterinary*
  • Perciformes* / physiology
  • Predatory Behavior*
  • Snails* / physiology