Inferring influence and leadership in moving animal groups

Philos Trans R Soc Lond B Biol Sci. 2018 May 19;373(1746):20170006. doi: 10.1098/rstb.2017.0006.

Abstract

Collective decision-making is a daily occurrence in the lives of many group-living animals, and can have critical consequences for the fitness of individuals. Understanding how decisions are reached, including who has influence and the mechanisms by which information and preferences are integrated, has posed a fundamental challenge. Here, we provide a methodological framework for studying influence and leadership in groups. We propose that individuals have influence if their actions result in some behavioural change among their group-mates, and are leaders if they consistently influence others. We highlight three components of influence (influence instances, total influence and consistency of influence), which can be assessed at two levels (individual-to-individual and individual-to-group). We then review different methods, ranging from individual positioning within groups to information-theoretic approaches, by which influence has been operationally defined in empirical studies, as well as how such observations can be aggregated to give insight into the underlying decision-making process. We focus on the domain of collective movement, with a particular emphasis on methods that have recently been, or are being, developed to take advantage of simultaneous tracking data. We aim to provide a resource bringing together methodological tools currently available for studying leadership in moving animal groups, as well as to discuss the limitations of current methodologies and suggest productive avenues for future research.This article is part of the theme issue 'Collective movement ecology'.

Keywords: collective movement; decision-making; leadership; methods; social behaviour.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Animals
  • Behavior, Animal*
  • Decision Making*
  • Models, Biological
  • Movement*
  • Social Behavior*

Associated data

  • Dryad/10.6084/m9.figshare.c.3998229