The ctenophore Mnemiopsis leidyi regulates egg production via conspecific communication

BMC Ecol. 2018 Mar 26;18(1):12. doi: 10.1186/s12898-018-0169-9.

Abstract

Background: Communication between individuals of the same species is an important aspect of mating and reproduction in most animals. In simultaneously hermaphroditic species with the ability to self-fertilize, communication with conspecifics can be essential to avoid inbreeding depression. One such behavioral adaptation observed in some simultaneous hermaphrodites is gamete trading. This behavior involves individual hermaphrodites in pairs alternating between reproducing as the male and female, and, as such, necessarily requires communication and coordination between mates. Little is known about communication in ctenophores and conspecific communication has not been described in this group; however, our previous work suggested that the ctenophore Mnemiopsis leidyi might engage in gamete trading. We tested for this possibility by constructing divided arenas (both sealed and permeable) that allowed us to measure individual egg output for paired M. leidyi.

Results: We found that, when not allowed to interact, size-matched individuals produced similar numbers of eggs on each side of the arena. However, if allowed to interact and exchange water, size-matched pairs produce significantly different numbers of eggs on each side of the arena, suggesting that these pairs use chemical communication to modulate reproduction in the presence of conspecifics as would be expected in gamete trading.

Conclusion: This finding presents exciting new possibilities for future investigations into the nature of signaling in M. leidyi. Furthermore, this first evidence of conspecific communication in Ctenophora, a group that branched off from the rest of animals more than 600 million years ago, has significant implications for the signaling ability of the last common ancestor of all animals.

Keywords: Egg-trading; Hermaphrodite; Mnemiopsis leidyi; Reproduction; Self-fertilization.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animal Communication*
  • Animals
  • Ctenophora / physiology*
  • Reproduction