Self-Powered Wearable Electronics Based on Moisture Enabled Electricity Generation

Adv Mater. 2018 May;30(18):e1705925. doi: 10.1002/adma.201705925. Epub 2018 Mar 24.

Abstract

Most state-of-the-art electronic wearable sensors are powered by batteries that require regular charging and eventual replacement, which would cause environmental issues and complex management problems. Here, a device concept is reported that can break this paradigm in ambient moisture monitoring-a new class of simple sensors themselves can generate moisture-dependent voltage that can be used to determine the ambient humidity level directly. It is demonstrated that a moisture-driven electrical generator, based on the diffusive flow of water in titanium dioxide (TiO2 ) nanowire networks, can yield an output power density of up to 4 µW cm-2 when exposed to a highly moist environment. This performance is two orders of magnitude better than that reported for carbon-black generators. The output voltage is strongly dependent on humidity of ambient environment. As a big breakthrough, this new type of device is successfully used as self-powered wearable human-breathing monitors and touch pads, which is not achievable by any existing moisture-induced-electricity technology. The availability of high-output self-powered electrical generators will facilitate the design and application of a wide range of new innovative flexible electronic devices.

Keywords: fluidic electricity; moisture; nanogenerators; self-powered sensors.