Unravelling Some of the Structure-Property Relationships in Graphene Oxide at Low Degree of Oxidation

J Phys Chem Lett. 2018 Apr 5;9(7):1746-1749. doi: 10.1021/acs.jpclett.8b00421. Epub 2018 Mar 22.

Abstract

Graphene oxide (GO) is a versatile 2D material whose properties can be tuned by changing the type and concentration of oxygen-containing functional groups attached to its surface. However, a detailed knowledge of the dependence of the chemo/physical features of this material on its chemical composition is largely unknown. We combine classical molecular dynamics and density functional theory simulations to predict the structural and electronic properties of GO at low degree of oxidation and suggest a revision of the Lerf-Klinowski model. We find that layer deformation is larger for samples containing high concentrations of epoxy groups and that correspondingly the band gap increases. Targeted chemical modification of the GO surface appears to be an effective route to tailor the electronic properties of the monolayer for given applications. Our simulations also show that the chemical shift of the C-1s XPS peak allows one to unambiguously characterize GO composition, resolving the peak attribution uncertainty often encountered in experiments.