Lysobacter silvestris sp. nov., isolated from alpine forest soil, and reclassification of Luteimonas tolerans as Lysobacter tolerans comb. nov

Int J Syst Evol Microbiol. 2018 May;68(5):1571-1577. doi: 10.1099/ijsem.0.002710. Epub 2018 Mar 16.

Abstract

A Gram-stain-negative, rod-shaped, motile, catalase-positive and cytochrome c oxidase-positive bacterial strain, designated AM20-91T, was isolated from alpine forest soil. Phylogenetic analysis based on 16S rRNA gene sequencing showed that strain AM20-91T was related to the genus Lysobacter and had highest 16S rRNA gene sequence similarities to the type strains of Lysobacter novalis THG-PC7T (97.8 %), Luteimonas tolerans UM1T (97.7 %) and Lysobacter ximonensis XM415T (97.0 %). The strain contained ubiquinone 8 as the predominant respiratory quinone; its polar lipid profile contained phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and two unidentified aminophospholipids. The major cellular fatty acids (>10 %) were iso-C15 : 0, iso-C11 : 0 3-OH and iso-C11 : 0. The DNA G+C content was 63.35 % (draft genome sequence). The combined results of phylogenetic, phenotypic, DNA-DNA relatedness and chemotaxonomic analyses demonstrated that strain AM20-91T represents a novel species of the genus Lysobacter, for which the name Lysobacter silvestris sp. nov. is proposed. The type strain is AM20-91T (=DSM 104734T=LMG 30011). In this study, it is also proposed that Luteimonas tolerans be reclassified as member of the genus Lysobacter.

Keywords: Luteimonas; Lysobacter; alpine; forest.

MeSH terms

  • Bacterial Typing Techniques
  • Base Composition
  • DNA, Bacterial / genetics
  • Fatty Acids / chemistry
  • Forests*
  • Italy
  • Lysobacter / classification*
  • Lysobacter / genetics
  • Lysobacter / isolation & purification
  • Nucleic Acid Hybridization
  • Phospholipids / chemistry
  • Phylogeny*
  • RNA, Ribosomal, 16S / genetics
  • Sequence Analysis, DNA
  • Soil Microbiology*
  • Ubiquinone / chemistry

Substances

  • DNA, Bacterial
  • Fatty Acids
  • Phospholipids
  • RNA, Ribosomal, 16S
  • Ubiquinone
  • ubiquinone 8