Enhancing functional platelet release in vivo from in vitro-grown megakaryocytes using small molecule inhibitors

Blood Adv. 2018 Mar 27;2(6):597-606. doi: 10.1182/bloodadvances.2017010975.

Abstract

In vitro-grown megakaryocytes for generating platelets may have value in meeting the increasing demand for platelet transfusions. Remaining challenges have included the poor yield and quality of in vitro-generated platelets. We have shown that infusing megakaryocytes leads to intrapulmonary release of functional platelets. A Src kinase inhibitor (SU6656), a Rho-associated kinase inhibitor (Y27632), and an aurora B kinase inhibitor (AZD1152) have been shown to increase megakaryocyte ploidy and in vitro proplatelet release. We now tested whether megakaryocytes generated from CD34+ hematopoietic cells in the presence of these inhibitors could enhance functional platelet yield following megakaryocyte infusion. As expected, all inhibitors increased megakaryocyte ploidy, size, and granularity, but these inhibitors differed in whether they injured terminal megakaryocytes: SU6656 was protective, whereas Y27632 and AZD1152 increased injury. Upon infusion, inhibitor-treated megakaryocytes released threefold to ninefold more platelets per initial noninjured megakaryocyte relative to control, but only SU6656-treated megakaryocytes had a significant increase in platelet yield when calculated based on the number of initial CD34+ cells; this was fourfold over nontreated megakaryocytes. The released platelets from drug-treated, but healthy, megakaryocytes contained similar percentages of young, uninjured platelets that robustly responded to agonists and were well incorporated into a growing thrombus in vivo as controls. These studies suggest that drug screens that select megakaryocytes with enhanced ploidy, cell size, and granularity may include a subset of drugs that can enhance the yield and function of platelets, and may have clinical application for ex vivo-generated megakaryocytes and platelet transfusion.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Biomarkers
  • Blood Platelets / drug effects*
  • Blood Platelets / metabolism*
  • Hematopoietic Stem Cells / cytology
  • Hematopoietic Stem Cells / drug effects
  • Hematopoietic Stem Cells / metabolism
  • Humans
  • Immunohistochemistry
  • Megakaryocytes / cytology
  • Megakaryocytes / drug effects*
  • Megakaryocytes / metabolism*
  • Mice
  • Platelet Aggregation Inhibitors / pharmacology*
  • Protein Kinase Inhibitors / pharmacology
  • Thrombopoiesis / drug effects*

Substances

  • Biomarkers
  • Platelet Aggregation Inhibitors
  • Protein Kinase Inhibitors