Dietary Cadmium Intake and Its Effects on Kidneys

Toxics. 2018 Mar 10;6(1):15. doi: 10.3390/toxics6010015.

Abstract

Cadmium (Cd) is a food-chain contaminant that has high rates of soil-to-plant transference. This phenomenon makes dietary Cd intake unavoidable. Although long-term Cd intake impacts many organ systems, the kidney has long been considered to be a critical target of its toxicity. This review addresses how measurements of Cd intake levels and its effects on kidneys have traditionally been made. These measurements underpin the derivation of our current toxicity threshold limit and tolerable intake levels for Cd. The metal transporters that mediate absorption of Cd in the gastrointestinal tract are summarized together with glomerular filtration of Cd and its sequestration by the kidneys. The contribution of age differences, gender, and smoking status to Cd accumulation in lungs, liver, and kidneys are highlighted. The basis for use of urinary Cd excretion to reflect body burden is discussed together with the use of urinary N-acetyl-β-d-glucosaminidase (NAG) and β2-microglobulin (β2-MG) levels to quantify its toxicity. The associations of Cd with the development of chronic kidney disease and hypertension, reduced weight gain, and zinc reabsorption are highlighted. In addition, the review addresses how urinary Cd threshold levels have been derived from human population data and their utility as a warning sign of impending kidney malfunction.

Keywords: ">d-glucosaminidase; N-acetyl-β-; body burden indicator; chronic kidney disease; dietary cadmium; exposure assessment; glomerular filtration rate; hypertension; threshold limit; urine cadmium; β2-microglobulin.

Publication types

  • Review