Radical Ions of 3-Styryl-quinoxalin-2-one Derivatives Studied by Pulse Radiolysis in Organic Solvents

J Phys Chem B. 2018 Apr 12;122(14):4051-4066. doi: 10.1021/acs.jpcb.8b01004. Epub 2018 Mar 27.

Abstract

The absorption-spectral and kinetic behaviors of radical ions and neutral hydrogenated radicals of seven 3-styryl-quinoxalin-2(1 H)-one (3-SQ) derivatives, one without substituents in the styryl moiety, four others with electron-donating (R = -CH3, -OCH3, and -N(CH3)2) or electron-withdrawing (R = -OCF3) substituents in the para position in their benzene ring, and remaining two with double methoxy substituents (-OCH3), however, at different positions (meta/para and ortho/meta) have been studied by UV-vis spectrophotometric pulse radiolysis in neat acetonitrile saturated with argon (Ar) and oxygen (O2) and in 2-propanol saturated with Ar, at room temperature. In acetonitrile solutions, the radical anions (4R-SQ•-) are characterized by two absorption maxima located at λmax = 470-490 nm and λmax = 510-540 nm, with the respective molar absorption coefficients ε470-490 = 8500-13 100 M-1 cm-1 and ε510-540 = 6100-10 300 M-1 cm-1, depending on the substituent (R). All 4R-SQ•- decay in acetonitrile via first-order kinetics, with the rate constants in the range (1.2-1.5) × 106 s-1. In 2-propanol solutions, they decay predominantly through protonation by the solvent, forming neutral hydrogenated radicals (4R-SQH), which are characterized by weak absorption bands with λmax = 480-490 nm. Being oxygen-insensitive, the radical cations (4R-SQ•+) are characterized by a strong absorption with λmax = 450-630 nm, depending on the substituent (R). They are formed in a charge-transfer reaction between a radical cation derived from acetonitrile (ACN•+) and substituted 3-styryl-quinoxalin-2-one derivatives (4R-SQ) with a pseudo-first-order rate constant k = (2.7-4.7) × 105 s-1 measured in solutions containing 0.1 mM 4R-3-SQ. The Hammett equation plot gave a very small negative slope (ρ = -0.08), indicating a very weak influence of the substituents in the benzene ring on the rate of charge-transfer reaction. The decay of 4R-SQ•+ in Ar-saturated acetonitrile solutions occurs with a pseudo-first-order rate constant k = (1.6-6.2) × 104 s-1 and, in principle, is not affected by the presence of O2, suggesting charge-spin delocalization over the whole 3-SQ molecule. Most of the radiolytically generated transient spectra are reasonably well-reproduced by semiempirical PM3-ZINDO/S (for 4R-SQ•-) and density functional theory quantum mechanics calculations employing M06-2x hybrid functional together with the def2-TZVP basis set (for 4R-SQ•+).

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.