Liquid crystal terahertz modulator with plasmon-induced transparency metamaterial

Opt Express. 2018 Mar 5;26(5):5769-5776. doi: 10.1364/OE.26.005769.

Abstract

An electrically tunable terahertz (THz) modulator with large modulation depth and low insertion loss is performed with liquid crystal (LC) metamaterial. The modulation depth beyond 90% and insertion loss below 0.5 dB are achievable at normal incidence by exploiting plasmon-induced transparency (PIT) effect. The PIT spectra can be manipulated by actively controlling the interference between dipole mode and nonlocal surface-Bloch mode with LC. The incident angle tuning effect on PIT spectra shows that the large modulation depth and low insertion loss can remain over a wide range of working angles. The superior property and simplicity of design make this modulator promising in advanced terahertz communication.