Surface plasmon resonance extension through two-block metal-conducting polymer nanorods

Nat Commun. 2018 Mar 8;9(1):1010. doi: 10.1038/s41467-018-03453-z.

Abstract

Research on surface plasmon resonance coupling of metallic nanostructures is an important area in the field of plasmonics because distinctive collective optical properties can be realized that are different from the individual constituents. Here we report the localized surface plasmon resonance of hybrid metal-organic nanorods. Colloidal-dispersed Au-PPy nanorods were synthesized as a representative material using a modified electrochemical method, and the collective oscillation properties were systematically investigated by comparing these materials with pure Au nanorods. We observed the extended surface plasmon resonance of a hybrid system. The presence of doped-PPy segments on Au segments induced an enhanced coherent electric field due to the partial contribution of π-electrons on the PPy segment, which led to a red-shifted plasmon feature. Additionally, we demonstrated that surface plasmon resonance extension can be tuned by dopant anions, which demonstrates a way of tuning a dopant-induced plasmonic system.

Publication types

  • Research Support, Non-U.S. Gov't