Iron Oxide and Gold Based Magneto-Plasmonic Nanostructures for Medical Applications: A Review

Nanomaterials (Basel). 2018 Mar 7;8(3):149. doi: 10.3390/nano8030149.

Abstract

Iron oxide and gold-based magneto-plasmonic nanostructures exhibit remarkable optical and superparamagnetic properties originating from their two different components. As a consequence, they have improved and broadened the application potential of nanomaterials in medicine. They can be used as multifunctional nanoprobes for magneto-plasmonic heating as well as for magnetic and optical imaging. They can also be used for magnetically assisted optical biosensing, to detect extreme traces of targeted bioanalytes. This review introduces the previous work on magneto-plasmonic hetero-nanostructures including: (i) their synthesis from simple "one-step" to complex "multi-step" routes, including seed-mediated and non-seed-mediated methods; and (ii) the characterization of their multifunctional features, with a special emphasis on the relationships between their synthesis conditions, their structures and their properties. It also focuses on the most important progress made with regard to their use in nanomedicine, keeping in mind the same aim, the correlation between their morphology-namely spherical and non-spherical, core-satellite and core-shell, and the desired applications.

Keywords: core-satellite; magneto-plasmonic; nanocrystals; non-spherical; seed-mediated; spherical.

Publication types

  • Review