Three-Dimensional Bioprinting of Oppositely Charged Hydrogels with Super Strong Interface Bonding

ACS Appl Mater Interfaces. 2018 Apr 4;10(13):11164-11174. doi: 10.1021/acsami.7b19730. Epub 2018 Mar 21.

Abstract

A novel strategy to improve the adhesion between printed layers of three-dimensional (3D) printed constructs is developed by exploiting the interaction between two oppositely charged hydrogels. Three anionic hydrogels [alginate, xanthan, and κ-carrageenan (Kca)] and three cationic hydrogels [chitosan, gelatin, and gelatin methacrylate (GelMA)] are chosen to find the optimal combination of two oppositely charged hydrogels for the best 3D printability with strong interface bonding. Rheological properties and printability of the hydrogels, as well as structural integrity of printed constructs in cell culture medium, are studied as functions of polymer concentration and the combination of hydrogels. Kca2 (2 wt % Kca hydrogel) and GelMA10 (10 wt % GelMA hydrogel) are found to be the best combination of oppositely charged hydrogels for 3D printing. The interfacial bonding between a Kca layer and a GelMA layer is proven to be significantly higher than that of the bilayered Kca or bilayered GelMA because of the formation of polyelectrolyte complexes between the oppositely charged hydrogels. A good cell viability of >96% is obtained for the 3D-bioprinted Kca-GelMA construct. This novel strategy has a great potential for 3D bioprinting of layered constructs with a strong interface bonding.

Keywords: 3D bioprinting; gelatin; hydrogels; interface; κ-carrageenan.

MeSH terms

  • Bioprinting*
  • Cell Survival
  • Gelatin
  • Hydrogels
  • Printing, Three-Dimensional
  • Tissue Engineering
  • Tissue Scaffolds

Substances

  • Hydrogels
  • Gelatin