Tunable Dielectric Properties of Poly(vinylidenefluoride-co-hexafluoropropylene) Films with Embedded Fluorinated Barium Strontium Titanate Nanoparticles

Sci Rep. 2018 Mar 6;8(1):4086. doi: 10.1038/s41598-018-22442-2.

Abstract

Fluoropolymer nanocomposites of poly(vinylidene fluoride-co-hexafluoropropylene) (PVdF-HFP) were prepared using fluorinated barium strontium titanate (Ba1-xSrxTiO3, BSTO) nanoparticles (NPs) by low-temperature synthesis using a modified liquid-solid solution process. The exact stoichiometry of as-synthesized BSTO NPs was confirmed by X-ray diffraction analysis along with lattice parameter calculations. The synthesized BSTO NPs were fluorinated using 2,2,2-trifluoroacetic acid as a fluorous ligand. The BSTO NPs showed high solubility in the fluorous system (polymer and solvent) on account of their modified surface. The root-mean-square roughness of the fluorinated BSTO/PVdF-HFP nanocomposite was 76 times lower than that of the nonfluorinated BSTO/PVdF-HFP nanocomposite. The dielectric constant of the fluorinated BSTO/PVdF-HFP nanocomposite exhibited Curie temperature behavior. The dielectric constant of the nanocomposite predicted using the modified Kerner model at room temperature agreed well with the experimental values.