Real-Time Gas Mixture Analysis Using Mid-Infrared Membrane Microcavities

Anal Chem. 2018 Apr 3;90(7):4348-4353. doi: 10.1021/acs.analchem.7b03599. Epub 2018 Mar 15.

Abstract

Real-time gas analysis on-a-chip was demonstrated using a mid-infrared (mid-IR) microcavity. Optical apertures for the microcavity were made of ultrathin silicate membranes embedded in a silicon chip using the complementary metal-oxide-semiconductor (CMOS) process. Fourier transform infrared spectroscopy (FTIR) shows that the silicate membrane is transparent in the range of 2.5-6.0 μm, a region that overlaps with multiple characteristic gas absorption lines and therefore enables gas detection applications. A test station integrating a mid-IR tunable laser, a microgas delivery system, and a mid-IR camera was assembled to evaluate the gas detection performance. CH4, CO2, and N2O were selected as analytes due to their strong absorption bands at λ = 3.25-3.50, 4.20-4.35, and 4.40-4.65 μm, which correspond to C-H, C-O, and O-N stretching, respectively. A short subsecond response time and high gas identification accuracy were achieved. Therefore, our chip-scale mid-IR sensor provides a new platform for an in situ, remote, and embedded gas monitoring system.

Publication types

  • Research Support, Non-U.S. Gov't