Three-Dimensional Graphene-RGD Peptide Nanoisland Composites That Enhance the Osteogenesis of Human Adipose-Derived Mesenchymal Stem Cells

Int J Mol Sci. 2018 Feb 27;19(3):669. doi: 10.3390/ijms19030669.

Abstract

Graphene derivatives have immense potential in stem cell research. Here, we report a three-dimensional graphene/arginine-glycine-aspartic acid (RGD) peptide nanoisland composite effective in guiding the osteogenesis of human adipose-derived mesenchymal stem cells (ADSCs). Amine-modified silica nanoparticles (SiNPs) were uniformly coated onto an indium tin oxide electrode (ITO), followed by graphene oxide (GO) encapsulation and electrochemical deposition of gold nanoparticles. A RGD-MAP-C peptide, with a triple-branched repeating RGD sequence and a terminal cysteine, was self-assembled onto the gold nanoparticles, generating the final three-dimensional graphene-RGD peptide nanoisland composite. We generated substrates with various gold nanoparticle-RGD peptide cluster densities, and found that the platform with the maximal number of clusters was most suitable for ADSC adhesion and spreading. Remarkably, the same platform was also highly efficient at guiding ADSC osteogenesis compared with other substrates, based on gene expression (alkaline phosphatase (ALP), runt-related transcription factor 2), enzyme activity (ALP), and calcium deposition. ADSCs induced to differentiate into osteoblasts showed higher calcium accumulations after 14-21 days than when grown on typical GO-SiNP complexes, suggesting that the platform can accelerate ADSC osteoblastic differentiation. The results demonstrate that a three-dimensional graphene-RGD peptide nanoisland composite can efficiently derive osteoblasts from mesenchymal stem cells.

Keywords: RGD peptide; adipose-derived stem cells; differentiation; gold nanoparticles; graphene oxide; mesenchymal stem cells; osteogenesis; silica nanoparticles.

MeSH terms

  • Adipose Tissue / cytology*
  • Cell Differentiation
  • Cells, Cultured
  • Gold
  • Graphite / chemistry*
  • Humans
  • Mesenchymal Stem Cells / cytology*
  • Mesenchymal Stem Cells / drug effects*
  • Mesenchymal Stem Cells / metabolism
  • Metal Nanoparticles
  • Nanocomposites / chemistry*
  • Oligopeptides / chemistry*
  • Oligopeptides / pharmacology*
  • Osteogenesis / drug effects*
  • Silicon

Substances

  • Oligopeptides
  • Gold
  • Graphite
  • arginyl-glycyl-aspartic acid
  • Silicon