Methionine-Capped Gold Nanoclusters as a Fluorescence-Enhanced Probe for Cadmium(II) Sensing

Sensors (Basel). 2018 Feb 23;18(2):658. doi: 10.3390/s18020658.

Abstract

Gold nanoclusters (Au NCs) have been considered as novel heavy metal ions sensors due to their ultrafine size, photo-stability and excellent fluorescent properties. In this study, a green and facile method was developed for the preparation of fluorescent water-soluble gold nanoclusters with methionine as a stabilizer. The nanoclusters emit orange fluorescence with excitation/emission peaks at 420/565 nm and a quantum yield of about 1.46%. The fluorescence of the Au NCs is selectively and sensitively enhanced by addition of Cd(II) ions attributed to the Cd(II) ion-induced aggregation of nanoclusters. This finding was further used to design a fluorometric method for the determination of Cd(II) ions, which had a linear response in the concentration range from 50 nM to 35 μM and a detection limit of 12.25 nM. The practicality of the nanoprobe was validated in various environmental water samples and milk powder samples, with a fairly satisfactory recovery percent.

Keywords: cadmium ion; enhancing; fluorescence; gold nanoclusters; methionine; milk; water.