Impacts of the active layer on runoff in an upland permafrost basin, northern Tibetan Plateau

PLoS One. 2018 Feb 22;13(2):e0192591. doi: 10.1371/journal.pone.0192591. eCollection 2018.

Abstract

The paucity of studies on permafrost runoff generation processes, especially in mountain permafrost, constrains the understanding of permafrost hydrology and prediction of hydrological responses to permafrost degradation. This study investigated runoff generation processes, in addition to the contribution of summer thaw depth, soil temperature, soil moisture, and precipitation to streamflow in a small upland permafrost basin in the northern Tibetan Plateau. Results indicated that the thawing period and the duration of the zero-curtain were longer in permafrost of the northern Tibetan Plateau than in the Arctic. Limited snowmelt delayed the initiation of surface runoff in the peat permafrost in the study area. The runoff displayed intermittent generation, with the duration of most runoff events lasting less than 24 h. Precipitation without runoff generation was generally correlated with lower soil moisture conditions. Combined analysis suggested runoff generation in this region was controlled by soil temperature, thaw depth, precipitation frequency and amount, and antecedent soil moisture. This study serves as an important baseline to evaluate future environmental changes on the Tibetan Plateau.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Hydrology
  • Permafrost*
  • Rain*
  • Soil
  • Tibet

Substances

  • Soil

Grants and funding

This work is supported by the National Natural Science Foundation of China (91325202; 41501063, 41421061), and Fundamental Research Funds for the Central Universities (lzujbky-2017-40).