GPCRs in context: sexual dimorphism in the cardiovascular system

Br J Pharmacol. 2018 Nov;175(21):4047-4059. doi: 10.1111/bph.14160. Epub 2018 Mar 25.

Abstract

Cardiovascular disease (CVD) remains the largest cause of mortality worldwide, and there is a clear gender gap in disease occurrence, with men being predisposed to earlier onset of CVD, including atherosclerosis and hypertension, relative to women. Oestrogen may be a driving factor for female-specific cardioprotection, though androgens and sex chromosomes are also likely to contribute to sexual dimorphism in the cardiovascular system (CVS). Many GPCR-mediated processes are involved in cardiovascular homeostasis, and some exhibit clear sex divergence. Here, we focus on the G protein-coupled oestrogen receptor, endothelin receptors ETA and ETB and the eicosanoid G protein-coupled receptors (GPCRs), discussing the evidence and potential mechanisms leading to gender dimorphic responses in the vasculature. The use of animal models and pharmacological tools has been essential to understanding the role of these receptors in the CVS and will be key to further delineating their sex-specific effects. Ultimately, this may illuminate wider sex differences in cardiovascular pathology and physiology.

Linked articles: This article is part of a themed section on Molecular Pharmacology of GPCRs. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.21/issuetoc.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Cardiovascular System / metabolism*
  • Humans
  • Receptors, G-Protein-Coupled / metabolism*
  • Sex Characteristics

Substances

  • Receptors, G-Protein-Coupled