Probing the Mechanism of Inactivation of the FOX-4 Cephamycinase by Avibactam

Antimicrob Agents Chemother. 2018 Apr 26;62(5):e02371-17. doi: 10.1128/AAC.02371-17. Print 2018 May.

Abstract

Ceftazidime-avibactam is a "second-generation" β-lactam-β-lactamase inhibitor combination that is effective against Enterobacteriaceae expressing class A extended-spectrum β-lactamases, class A carbapenemases, and/or class C cephalosporinases. Knowledge of the interactions of avibactam, a diazabicyclooctane with different β-lactamases, is required to anticipate future resistance threats. FOX family β-lactamases possess unique hydrolytic properties with a broadened substrate profile to include cephamycins, partly as a result of an isoleucine at position 346, instead of the conserved asparagine found in most AmpCs. Interestingly, a single amino acid substitution at N346 in the Citrobacter AmpC is implicated in resistance to the aztreonam-avibactam combination. In order to understand how diverse active-site topologies affect avibactam inhibition, we tested a panel of clinical Enterobacteriaceae isolates producing blaFOX using ceftazidime-avibactam, determined the biochemical parameters for inhibition using the FOX-4 variant, and probed the atomic structure of avibactam with FOX-4. Avibactam restored susceptibility to ceftazidime for most isolates producing blaFOX; two isolates, one expressing blaFOX-4 and the other producing blaFOX-5, displayed an MIC of 16 μg/ml for the combination. FOX-4 possessed a k2/K value of 1,800 ± 100 M-1 · s-1 and an off rate (koff) of 0.0013 ± 0.0003 s-1 Mass spectrometry showed that the FOX-4-avibactam complex did not undergo chemical modification for 24 h. Analysis of the crystal structure of FOX-4 with avibactam at a 1.5-Å resolution revealed a unique characteristic of this AmpC β-lactamase. Unlike in the Pseudomonas-derived cephalosporinase 1 (PDC-1)-avibactam crystal structure, interactions (e.g., hydrogen bonding) between avibactam and position I346 in FOX-4 are not evident. Furthermore, another residue is not observed to be close enough to compensate for the loss of these critical hydrogen-bonding interactions. This observation supports findings from the inhibition analysis of FOX-4; FOX-4 possessed the highest Kd (dissociation constant) value (1,600 nM) for avibactam compared to other AmpCs (7 to 660 nM). Medicinal chemists must consider the properties of extended-spectrum AmpCs, such as the FOX β-lactamases, for the design of future diazabicyclooctanes.

Keywords: avibactam; beta-lactam; beta-lactamase; cephamycinase.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Amino Acid Substitution
  • Azabicyclo Compounds / pharmacology*
  • Bacterial Proteins / metabolism*
  • Ceftazidime / pharmacology
  • Drug Combinations
  • Enzyme Activation / drug effects
  • Escherichia coli Proteins / metabolism
  • Microbial Sensitivity Tests
  • Pseudomonas / enzymology
  • beta-Lactamases / metabolism*

Substances

  • Azabicyclo Compounds
  • Bacterial Proteins
  • Drug Combinations
  • Escherichia coli Proteins
  • avibactam, ceftazidime drug combination
  • avibactam
  • Ceftazidime
  • fox-4 protein, E coli
  • beta-Lactamases
  • carbapenemase