Uterine influences on conceptus development in fertility-classified animals

Proc Natl Acad Sci U S A. 2018 Feb 20;115(8):E1749-E1758. doi: 10.1073/pnas.1721191115. Epub 2018 Feb 5.

Abstract

A major unresolved issue is how the uterus influences infertility and subfertility in cattle. Serial embryo transfer was previously used to classify heifers as high-fertile (HF), subfertile (SF), or infertile (IF). To assess pregnancy loss, two in vivo-produced embryos were transferred into HF, SF, and IF heifers on day 7, and pregnancy outcome was assessed on day 17. Pregnancy rate was substantially higher in HF (71%) and SF (90%) than IF (20%) heifers. Elongating conceptuses were about twofold longer in HF than SF heifers. Transcriptional profiling detected relatively few differences in the endometrium of nonpregnant HF, SF, and IF heifers. In contrast, there was a substantial difference in the transcriptome response of the endometrium to pregnancy between HF and SF heifers. Considerable deficiencies in pregnancy-dependent biological pathways associated with extracellular matrix structure and organization as well as cell adhesion were found in the endometrium of SF animals. Distinct gene expression differences were also observed in conceptuses from HF and SF animals, with many of the genes decreased in SF conceptuses known to be embryonic lethal in mice due to defects in embryo and/or placental development. Analyses of biological pathways, key players, and ligand-receptor interactions based on transcriptome data divulged substantial evidence for dysregulation of conceptus-endometrial interactions in SF animals. These results support the ideas that the uterus impacts conceptus survival and programs conceptus development, and ripple effects of dysregulated conceptus-endometrial interactions elicit loss of the postelongation conceptus in SF cattle during the implantation period of pregnancy.

Keywords: conceptus; endometrium; fertility; gene expression; pregnancy.

Publication types

  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Cattle
  • Cattle Diseases*
  • Embryo Transfer / veterinary*
  • Embryonic Development / physiology*
  • Endometrium / metabolism
  • Endometrium / physiology*
  • Female
  • Infertility, Female*
  • Pregnancy
  • Pregnancy Rate
  • Transcriptome