[Microbial communities in regions of arctic settlements]

Gig Sanit. 2016;95(10):293-9.
[Article in Russian]

Abstract

The composition and the structure of microbial communities in areas of Arctic settlements were studied. The main attention has been given to microscopic fungi. As result of observation of 5 Arctic regions 117 species of microscopic fungi are revealed in soils and anthropogenic substrates. The identification was carried out with the use ofmycological and molecular genetic methods. Most ofspecies belong to the Ascomycotina. Genus Penicillium is characterized by the most species diversity (24 species). Most offungi are destructors of various materials and potential human pathogens. Dominant species are revealed. The distribution of microorganisms in the living and working areas of polar stations, as well as the adjacent areas are described. Black-colored fungi adapted to unfavorable environment are often the dominated group of microorganisms on soils and anthropogenic substrates. The shaping of soil microbiota was shown to be related to the anthropogenic impact. Considerable similarity of microbial communities composition in the soil and man-made substrates is fixed. As result of mycological analysis of contaminated soils 76 species of microscopic fungi were observed, but 41 species of them (53.9%) were identified in the areas of Arctic polar stations on the man-made materials. These species include the representatives of the genera Alternaria, Aspergillus, Aureobasidium, Chaetomium, Cladosporium, Exophiala, Geomyces, Humicola, Penicillium, Mucor, Phoma, Rhodotorula, Trichoderma and Ulocladium. The obtained data show a significant similarity in species composition of contaminated soils and anthropogenic substrates. Human activity contributes to the distribution of cosmopolitan species, including opportunistic fungi, in the Arctic region. The high numbers of organotrophic bacteria were revealed in soil samples. Some species of microorganisms produce the organic acids in an external environment that promotes the erosion of materials.

MeSH terms

  • Arctic Regions / epidemiology
  • Biota
  • Environmental Monitoring / methods
  • Environmental Monitoring / statistics & numerical data
  • Humans
  • Microbiota
  • Mitosporic Fungi* / classification
  • Mitosporic Fungi* / isolation & purification
  • Mitosporic Fungi* / physiology
  • Phylogeography
  • Russia / epidemiology
  • Soil / standards*
  • Soil Microbiology*

Substances

  • Soil